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SUMMARY

Paenibacillus polymyxa PKB1 produces fusaricidins,
a family of lipopeptide antibiotics that strongly in-
hibits the growth of many plant pathogenic fungi.
The fusaricidin biosynthetic gene cluster was cloned
and sequenced, and it spans 32.4 kb, including an
open reading frame (fusA) encoding a six-module
nonribosomal peptide synthetase. The second,
fourth, and fifth modules of fusaricidin synthetase
each contain an epimerization domain, consistent
with the structure of fusaricidins. However, no epi-
merization domain is found in the sixth module, cor-
responding to D-Ala. This sixth adenylation domain
was produced at a high level in Escherichia coli and
is shown to activate D-Ala specifically, providing
evidence for direct activation of a D-amino acid by a
prokaryotic peptide synthetase. The fusaricidin gene
cluster also includes genes involved in the biosyn-
thesis of the lipid moiety, but no genes for resistance,
regulation, or transport functions were encountered.

INTRODUCTION

Fusaricidins are a group of lipopeptide antibiotics produced by

Paenibacillus polymyxa (formerly Bacillus polymyxa) and consist

of a guanidinylated b-hydroxy fatty acid linked to a cyclic hexa-

peptide including four amino acid residues in the D-configuration

(Figure 1) (Nakajima et al., 1972; Kurusu et al., 1987; Kajimura

and Kaneda, 1996, 1997; Kuroda et al., 2000). The antifungal ac-

tivity of the fusaricidins against Leptosphaeria maculans, a plant

pathogenic fungus causing phoma stem canker (blackleg) dis-

ease in canola, makes P. polymyxa PKB1 of interest as a potential

agent for biocontrol of blackleg disease (Kharbanda et al., 1997;

Beatty and Jensen, 2002). Previously, we identified a fragment of

a peptide synthetase gene (fusA) involved in the nonribosomal

biosynthesis of fusaricidins (Li et al., 2007). Nonribosomal pep-

tide synthetases (NRPSs) are large multienzyme complexes

that are organized into modules (Marahiel et al., 1997). The num-

ber and order of modules are usually colinear with the amino acid

sequence of the peptide product. Modules can be further di-

vided into domains, each responsible for one catalytic step of

peptide synthesis. The adenylation (A) domain is responsible

for substrate recognition and activation as an aminoacyl adeny-
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late. The activated amino acid is subsequently transferred to

a 40-phosphopantetheine (40-PP) cofactor that is covalently teth-

ered to the T domain, located downstream of the A domain. The

condensation (C) domain, located between the T and A domains

of consecutive modules, catalyzes peptide bond formation be-

tween two adjacent substrates. Finally, the fully assembled pep-

tide chain is released from the enzyme template through cycliza-

tion or hydrolysis, which is typically carried out by a thioesterase

(TE) domain located at the C-terminal end of the last module,

although in some instances a reductase domain can also be

responsible for release and cyclization (Kessler et al., 2004;

Kopp et al., 2006).

Unlike ribosomally synthesized peptides and proteins, a com-

mon structural feature of nonribosomal peptides is the incorpo-

ration of nonproteinogenic amino acid residues, which dramati-

cally increases the structural diversity and biological activity of

peptides made by NRPSs. These nonproteinogenic residues in-

clude D-amino acids, and three different mechanisms of D-amino

acid incorporation have been encountered to date. In most pep-

tide synthetases, modules that incorporate D-configured resi-

dues contain an additional domain responsible for epimerization,

found downstream of the T domain. An L-amino acid is acti-

vated, and the epimerization (E) domain then catalyzes L-to-D ra-

cemization of the thioester-bound amino acid (Stachelhaus and

Walsh, 2000). A second mechanism for incorporating D-amino

acids was observed in several NRPSs isolated from both actino-

mycete and Pseudomonas strains (Guenzi et al., 1998; McCaff-

erty et al., 2002; Roongsawang et al., 2003; Scholz-Schroeder

et al., 2003; Balibar et al., 2005; Yin and Zabriskie, 2006). In

the lipopeptide arthrofactin, for example, there are no E domains

detected in any of the 3 arthrofactin synthetases, although 7 of

the 11 amino acids are in the D-configuration. Biochemical anal-

yses demonstrated that A domains in modules corresponding to

D-amino acids were specific for activation of L-isomers, and

epimerase activity was provided by a new type of C domain

with dual epimerization and condensation functions, located

downstream of the T domain acylated with the amino acid under-

going epimerization. A third, very rare strategy for incorporation

of D-amino acids involves the direct activation of D-isomers by

the A domains. This mechanism was originally encountered in

cyclosporin (Dittmann et al., 1994; Weber et al., 1994) and HC-

toxin synthetases (Walton, 1987; Scott-Craig et al., 1992), both

from fungal systems. Although these NRPSs purified from natu-

ral sources were shown convincingly to incorporate D-Ala, no

biochemical studies with recombinant A domains have yet

been conducted. Both gene clusters encode independent
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alanine racemases to generate the required D-Ala (Hoffmann

et al., 1994; Cheng and Walton, 2000). Very recently, a third ex-

ample of direct activation of a D-amino acid was reported in

Streptomyces atroolivaceus, producer of the antitumor agent lei-

namycin. Leinamycin is a hybrid peptide/polyketide product in

which a D-Ala residue serves as a starter unit for assembly of

the molecule. The D-Ala residue is activated for this purpose by

means of an isolated adenylation protein, and the specificity of

this protein was shown to be for D- rather than L-Ala (Tang

et al., 2007). Finally, the D-alanylation of lipoteichoic acids in Ba-

cillus subtilis involves a D-alanyl-D-alanine carrier protein ligase

that appears to activate D-alanine directly by a mechanism sim-

ilar to that seen in the nonribosomal peptide synthatases (Perego

et al., 1995).

In this study, we cloned and characterized the complete fusar-

icidin biosynthetic gene cluster from P. polymyxa PKB1, includ-

ing fusA, which encodes a single peptide synthetase enzyme in-

volved in fusaricidin biosynthesis. Substrate specificity of the A

domain from the sixth module was investigated, and D-Ala was

shown to be activated directly, providing clear evidence of direct

selection and activation of a D-amino acid in a typical prokaryotic

NRPS system.

RESULTS AND DISCUSSION

Cloning and Sequencing the Fusaricidin Biosynthetic
Gene Cluster, fus

Previously, we constructed a SuperCos-1 genomic library of P.

polymyxa PKB1, and isolated a cosmid, Col-19, carrying a partial

Figure 1. Structure of Fusaricidin C

Amino acid substitutions tolerated at three defined positions in fusaricidin var-

iants are also presented. Residues are numbered according to the order of

synthesis.
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ORF (designated fusA) that encodes two modules typical of

NRPSs (Li et al., 2007). Disruption of fusA completely abolished

the antifungal activity of strain PKB1, indicating that it is part of

the fusaricidin biosynthetic gene cluster (fus). However, addi-

tional sequence analysis of Col-19 indicated that rearrangement

of the insert DNA or incorporation of non-contiguous genomic

DNA fragments had occurred, preventing complete analysis of

the fus gene cluster. A second SuperCos-1 genomic library of

PKB1 showed similar defects in all fusA-bearing clones, despite

careful attention to size selection of insert DNA fragments during

library construction. To circumvent these apparent instability

problems, a third genomic library of PKB1 was constructed by

using pSMART-FOS, a single-copy fosmid vector designed for

the stable maintenance of DNA inserts. The fosmid library was

screened by using a probe derived from the 30 end of the previ-

ously sequenced fusA gene fragment, and two overlapping fos-

mids, 4G9 and 6D11, were selected from a group of positive

clones for further study. Southern analyses showed no evidence

of rearrangement of the fosmid insert DNA, and sequence anal-

ysis yielded�48 kb of contiguous DNA sequence information

(Figure 2A). Subsequent analyses suggest that this DNA se-

quence covers the entire fusaricidin biosynthetic gene cluster

as well as flanking regions, although definitive proof would

require heterologous expression of the entire gene cluster.

Overall Organization of the fus Gene Cluster
The fus gene cluster itself covers 32.4 kb and includes 8 ORFs.

The organization and assigned functions of these ORFs are

shown in Figure 2A and Table 1, respectively. The boundaries

of the fus cluster are predicted based on the nature of the

gene products encoded and on gene-disruption analyses.

Genes identified in the biosynthetic gene cluster include those

necessary for assembly of the peptide backbone as well as syn-

thesis and incorporation of the lipid moiety, but genes for regu-

lation, export, and resistance were not detected in the region.

Modular Organization of the Fusaricidin Synthetase
The fus gene cluster includes a large ORF of about 23.7 kb, en-

coding a protein of 7,908 amino acids with a molecular mass of

888,101 Da. The predicted gene product shows the highest sim-

ilarity to bacitracin synthetase (BacC) from Bacillus licheniformis.

Sequence analysis revealed that the partial ORF cloned previ-

ously (Li et al., 2007) corresponds to the 50 end of this NRPS

gene. Therefore, we have retained the designation for the com-

plete ORF as the fusaricidin synthetase gene, fusA. The transla-

tion of fusA appears to start with an ATG codon at nt 17,682 of

the deposited sequence, 7 bp downstream of a putative ribo-

some-binding site (50-AGGAGT-30). By comparison with other

peptide synthetases, six functional modules were identified

within the deduced amino acid sequence of FusA (Figure 2B).

Each module contains the three catalytic domains common to

NRPSs, an A, a T, and a C domain.

FusA contains five typical C domains that presumably catalyze

peptide bond formation between the adjacent amino acid resi-

dues of fusaricidin. An additional C domain was detected at

the N terminus of the first module of FusA. C domains are not

normally present in the initial modules of NRPSs, except for in lip-

opeptides and chromodepsipeptides, subgroups of nonriboso-

mal peptides with acyl groups and chromophores, respectively,
, 118–127, February 2008 ª2008 Elsevier Ltd All rights reserved 119
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Figure 2. Diagrammatic Representation of the Fusaricidin Biosynthetic Gene Cluster

(A) ORF arrangement of the fus gene cluster and flanking regions. The black arrow represents the peptide synthetase gene fusA, whereas other fusaricidin

biosynthetic genes are shown in gray; genes flanking the cluster are in white. The overlapping fosmid inserts cloned in this study are also shown.

(B) Module and domain organization of the fusaricidin synthetase encoded by fusA.
attached at the N terminus (Schmoock et al., 2005). The pres-

ence of N-terminal C domains (CN) has been reported for a num-

ber of lipopeptide synthetases, including those from actinomy-

cete, Bacillus, and Pseudomonas species (Guenzi et al., 1998;

Roongsawang et al., 2003; Cosmina et al., 1993; Duitman

et al., 1999; Konz et al., 1999; Lin et al., 1999; Tsuge et al.,

2001; Miao et al., 2005, 2006) and is suggested to catalyze acyl-

ation of the first amino acid with a fatty acid as an early step

of lipopeptide biosynthesis. Since they catalyze the coupling of

fatty acids rather than amino acids to the first amino acid of

the peptide chain, these initial C domains may share structural

features not found in regular C domains, which could explain

the greater similarity seen among C domains from within this

group than to other typical C domains (Figure 3). The remaining

five C domains in FusA can be subdivided into two groups ac-

cording to their locations: they are the CD domains (in FusA-

C3, FusA-C5, and FusA-C6), which are preceded by an E domain

and accept an upstream D-amino acid at the donor site, and CL

domains (in FusA-C2 and FusA-C4), which are located immedi-

ately downstream of a T domain and accept an upstream

L-amino acid at the donor site. Distinct differences between the

CD and CL domains and similarities within the same domain

type were seen in the amino acid sequences of the conserved

motifs. This may reflect the stereoselectivity of C domains
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toward the C-terminal amino acid of the growing peptidyl chain

in the course of the condensation reaction.

Modifying E domains were detected at the C-terminal ends of

the second, fourth, and fifth modules, consistent with the incor-

poration of D-amino acids in these positions of fusaricidin pep-

tides. However, the sixth module, FusA-M6, corresponding to

D-Ala, lacks such an E domain, and instead terminates with

a C-terminal TE domain responsible for the cyclization and

release of the peptide product.

The T domains upstream of the E domains in FusA-M2, FusA-

M4, and FusA-M5 all contain a core sequence of LGGDSIK. The

aspartate residue (in bold) in front of the conserved serine resi-

due is essential for proper interaction between the T domain

and the downstream E domain, and subsequent racemization

of the thioester bound L-amino acid to its D-isomer (Linne et al.,

2001). In contrast, the core sequence of the T domain found in

FusA-M6 (LGGHSL) matches that of T domains not associated

with E domains (xGGHSL), such as those found in the first and

third modules. This finding is consistent with the absence of an

E domain in the final module of FusA. Furthermore, since the

amino acid activated by FusA-M6 occupies the C-terminal posi-

tion of the fusaricidin peptide, this excludes the possibility that

epimerization of an L-Ala residue is catalyzed by a downstream

dual C/E domain, as seen in some pseudomonads and
r Ltd All rights reserved
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Table 1. Summary of ORFs from the Fusaricidin Biosynthetic Gene Cluster and Flanking Regions

ORF Gene

Nucleotide

Position Highest BLAST Hit (%Identity/%Similarity)

1 gat 853–1428 Glutamine amidotransferase of anthranilate synthase (Thiobacillus denitrificans) YP_315982 (72/87)

2 adl 1432–2328 4-amino-4-deoxychorismate lyase (Bacillus sp.) ZP_01173359 (51/61)

3 dps 2361–3191 Dihydropteroate synthase (Geobacillus kaustophilus) YP_145922 (64/76)

4 dna 3390–3752 Dihydroneopterin aldolase (Bacillus coagulans) ZP_01697879 (54/75)

5 hpk 3762–4310 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (Bacillus cereus)

ZP_00240852 (50/67)

6 xre 4271–4462 Probable transcriptional regulator (Bacillus sp.) ZP_01173355 (50/71)

7 dus 4508–5536 tRNA-dihydrouridine synthase (Bacillus clausii) YP_173620 (74/88)

8 greA 5730–6227 Transcription elongation factor (Pelotomaculum thermopropionicum) YP_001210812 (71/87)

9 lysRS 6338–7858 Lysyl-tRNA synthetase (Geobacillus kaustophilus) YP_145927 (74/86)

10 ktp 7949–9286 K+ uptake transporter (Trk family) (Geobacillus kaustophilus) YP_146065 (48/71)

11 ymcC 9579–10112 YmcC (unknown function) (Rubrobacter xylanophilus) YP_645537 (49/68)

12 fusG 10739–11473 Enoyl-(acyl carrier protein) reductase (Bacillus cereus) NP_977660 (62/79)

13 fusF 11534–12946 Acyl CoA ligase (Streptomyces aizunensis) AAX98201 (36/56)

14 fusE 12991–14214 Hypothetical protein (aldehyde dehydrogenase) (Saccharopolyspora erythraea) YP_001102874 (40/65)

15 fusD 14211–15911 Acetolactate synthase large subunit (Saccharopolyspora erythraea)YP_001102875 (42/62)

16 fusC 16118–17176 3-oxoacyl-(acyl carrier protein) synthase (Bacillus licheniformis)YP_078422 (54/74)

17 fusB 17181–17588 (3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase (Bacillus cereus) NP_832645 (48/75)

18 fusA 17682–41408 Bacitracin synthetase 3; BacC (Bacillus licheniformis) O68008 (42/61)

19 fusTE 41926–42549 Hypothetical protein (a/b hydrolase) (Gloeobacter violaceus) NP_924256 (47/66)

20 rrnA-16 s 43187–44711 16S ribosomal RNA gene (Paenibacillus polymyxa) EF532687 (99%)

21 rrnA-23 s 45016–47943 23S ribosomal RNA gene (Bacillus licheniformis) CP000002 (86%)
actinomycetes (Balibar et al., 2005; Yin and Zabriskie, 2006).

Taken together, these findings suggest that either an external

racemase is involved in the transformation of thioester-bound

L-Ala to D-Ala, or that free D-Ala is directly selected and activated

by the A domain of FusA-M6, as was shown for the isolated ad-

enylation protein from leinamycin synthetase (Tang et al., 2007)

and strongly suggested for cyclosporin and HC-toxin biosynthe-

sis (Dittmann et al., 1994; Weber et al., 1994; Walton, 1987;

Scott-Craig et al., 1992).

Substrate Specificities of Adenylation Domains
By comparison with the amino acids lining the substrate-binding

pocket in the Phe-activating domain of gramicidin S synthetase

GrsA, a ‘‘nonribosomal code’’ specifying important residues in-

volved in substrate recognition by A domains has been defined

by two independent groups (Stachelhaus et al., 1999; Challis

et al., 2000). The corresponding amino acid residues were exam-

ined in the six A domains of FusA, and the substrate specificity of

each A domain was predicted (Table 2). The A domain in the first

module (FusA-A1) incorporating L-Thr and in the fourth module

(FusA-A4) incorporating D-allo-Thr both share the same signa-

ture sequence as the Thr-activating domain from fengycin syn-

thetase (FenD, GenBank accession number CAA09819). The

substrate-recognition sequence of FusA-A2 is most similar to

the Val-activating A domain from surfactin synthetase (SrfA-B,

GenBank accession number BAA08983), which also activates

Ile to a lesser extent (Elsner et al., 1997). The incorporation of

D-Val, D-Ile, or D-allo-Ile as substrates at this position in fusarici-

dins indicates an even broader substrate specificity, possibly

due to substitutions of Ile299/Leu and Gly322/Cys in FusA-
Chemistry & Biology 15,
A2 compared to SrfA-B. FusA-A3 contains a signature sequence

most closely resembling the 3-hydroxy-L-Tyr-activating domain

from chloroeremomycin synthetase (CepB, GenBank accession

number CAA11795). However, considerable similarity to the

Phe-activating domains from TycA and GrsA synthetases (Gen-

Bank accession numbers AAC45928 and CAA33603, respec-

tively) was also noted, which may explain the overall relaxed

specificity toward the aromatic and hydrophobic amino acid res-

idues seen at this position in the fusaricidin variants. The speci-

ficity code of FusA-A5 matches that of the Asn-activating A do-

main from tyrocidine synthetase (TycC, GenBank accession

number AAC45930). Replacement of D-Asn by D-Gln at the fifth

position in several fusaricidin variants indicates that this conser-

vative substitution is tolerated by the corresponding A domain.

The amino acid substrate for FusA-A6 cannot be predicted be-

cause its signature sequence shows no similarity to A domains

with assigned specificities, including those activating L- and

D-Ala (Figure 4). With the exception of FusA-M6, the predicted

substrates for the A domains of each module of fusaricidin syn-

thetase are consistent with the residues actually found at the

respective positions of the fusaricidin peptides.

In order to determine the substrate specificity of FusA-A6,

a DNA fragment corresponding to the A domain of FusA-M6

was amplified from fosmid 6D11 and was cloned into pET-19b.

Based on previously described A domain borders (Mootz and

Marahiel, 1997), the N-terminal end of the FusA-A6 domain

was set at 101 aa upstream from the core motif A2 (LKAGGA),

and the C-terminal end was set at 17 aa upstream from the

core motif T (LGGHS). After expression in E. coli, a soluble pro-

tein with a molecular mass of 64 kDa was obtained and purified
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Figure 3. Comparison of the Conserved Core Motifs within Condensation Domains of FusA

Alternative amino acids at a particular position are indicated. The N-terminal C domains (CNs) of surfactin synthetase SrfA-A (Bacillus subtilis, GenBank accession

number BAA02522), daptomycin synthetase DptA (Streptomyces roseosporus, accession number AAX31557), and arthrofactin synthetase ArfA (Pseudomonas

sp. MIS38, accession number BAC67534) are shown in comparison to the CN of FusA. CL and CD domains of FusA represent condensation domains following

modules activating L- and D-amino acid residues, respectively. Shading indicates identity with the consensus sequence. The C domains in each peptide synthe-

tase are numbered according to their order in the protein.
by Ni2+-affinity chromatography (Figure 5A). Enzymatic activity

of the purified recombinant FusA-A6 domain was determined

by an ATP-PPi exchange assay with various amino acids as sub-

strate. From the results obtained (Figure 5B), it was evident that

FusA-A6 activates D-Ala, with very low tolerance for L-Ala (less

than 1% of D-Ala), or any of a variety of amino acids, including

both L- and D-isomers (1%–4% of D-Ala). In previous studies of

cyclosporin and HC-toxin synthetases (Dittmann et al., 1994;

Weber et al., 1994; Walton, 1987; Scott-Craig et al., 1992), the

specificity for D-Ala activation by respective A domains was first

predicted based on the colinearity rule of NRPSs and then con-

firmed by showing direct incorporation of D-Ala by using native

NRPS proteins isolated from the producer fungi (Walton, 1987;

Cheng and Walton, 2000; Zocher et al., 1986). In contrast, direct

activation of D-Ala was demonstrated by using a recombinant

adenylation protein for leinamycin biosynthesis in S. altoooliva-
122 Chemistry & Biology 15, 118–127, February 2008 ª2008 Elsevier
ceus (Tang et al., 2007); however, this is an unusual system in

which the D-Ala residue is incorporated into a hybrid peptide/pol-

yketide by an isolated adenylation protein rather than an NRPS

module.

The data from the present study show that the recombinant A

domain from module six of fusaricidin synthetase recognizes and

activates D-Ala as its substrate. To our knowledge, this repre-

sents the first example of a typical NRPS of prokaryotic origin

in which direct activation of a D-amino acid was observed. Ala-

specific A domains, whether for L- or D-isomers, show relatively

weak similarity. However, since the side chain of D-Ala might

be expected to extend toward the opposite face of the amino

acid-binding pocket compared to L-Ala, it is not clear that the

signature amino acids that define the nonribosomal code in A

domains have any relevance for D-isomers. Furthermore, the

small size of the Ala side chain may allow greater variability in
Table 2. Amino Acid Residues Lining the Substrate-Binding Pockets of Adenylation Domains in Fusaricidin Synthetase

Adenylation

Domain

Residue Positions Involved in Substrate Recognitiona
Predicted

Substrate Corresponding Residue in Fusaricidin235 236 239 278 299 301 322 330 331

FusA-A1 D F W N I G M V H Thr L-Thr

FusA-A2 D A F W L G C T F Val D-Val, D-allo-Ile, or D-Ile

FusA-A3 D A S T L A G V C 3H-Tyrb
L-Tyr, L-Phe, L-Val, L-Ile, or L-allo-Ile

FusA-A4 D F W N I G M V H Thr D-allo-Thr

FusA-A5 D L T K I G E V G Asn D-Asn or D-Gln

FusA-A6 D F P N F C I V Y *c
D-Ala

a Lys517 was not included because it is conserved in all six A domains.
b 3H-Tyr represents 3-hydroxy-L-tyrosine.
c * represents no match.
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Figure 4. Alignment of the Amino Acid Sequences in Core Motifs A4 and A5 of FusA-A6 with Those of Other A Domains Known to Activate

L- or D-Ala

Deduced specificity-conferring residues are shaded light gray. Conserved motif sequences A4 and A5 are underlined. Structural anchor residues are shaded dark

gray. Abbreviations for proteins are as follows: Cssa, cyclosporin synthetase (Tolypocladium inflatum, accession number Z28383); Hts, HC-toxin synthetase (C.

carbonum, accession number M98024); LnmQ, leinamycin synthetase (Streptomyces atroolivaceus, accession number AF484556); DltA, d-alanine-d-alanyl car-

rier protein ligase (Bacillus subtilis, accession number NP_391729.1); Cpps, d-lysergyl peptide synthetase (Claviceps purpurea, accession number CAB39315);

SafB, saframycin Mx1 synthetase B (Myxococcus xanthus, accession number YP_632693). The A domains in each peptide synthetase are numbered according

to their module order in the protein.
the residues lining an Ala-binding pocket to be tolerated (Challis

et al., 2000). Interestingly, in each case in which direct activation

of a D-amino acid has been shown, the residue in question is

D-Ala. This allowable variability apparently can extend to accom-

modate the two chiral forms of Ala, whereas accommodating dif-

ferent chiral forms of larger amino acids may require so great
Chemistry & Biology 15,
a variation in sequence that A domain function would be com-

promised. Whereas the cyclosporin and HC-toxin biosynthetic

gene clusters each encode a distinct alanine racemase catalyz-

ing conversion of L- to D-Ala (Hoffmann et al., 1994; Cheng and

Walton, 2000), an alanine racemase specific for the fus cluster

was not encountered, nor was one reported for the leinamycin
118–127, February 2008 ª2008 Elsevier Ltd All rights reserved 123
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system (Tang et al., 2007). However, alanine racemases are

widely present in bacteria, where they provide D-Ala, essential

for cell wall synthesis.

Figure 5. Analysis of His-Tagged Recombi-

nant FusA-A6 Protein

(A) SDS-PAGE analysis of recombinant FusA-A6

protein. Lane 1, prestained protein ladder; lane

2, whole-cell extract obtained before IPTG induc-

tion; lane 3, whole-cell extract obtained after a 4 hr

induction with IPTG; lane 4, protein purified by

Ni2+-affinity chromatography.

(B) Relative activities of purified FusA-A6 protein

for various amino acid substrates determined by

using the ATP-PPi exchange assay. The control

reaction without amino acids was subtracted

from all reactions with amino acid substrates.

amino acid with the modified fatty acid

is presumably catalyzed by the initial C

domain in the first module of FusA. Addi-

tional studies are needed to clarify the

catalytic roles of the fatty acid and amino

acid biosynthetic genes upstream of fusA in fusaricidin biosyn-

thesis.
N-Terminal Lipidation of Fusaricidins
Fusaricidins belong to a group of nonribosomal peptides that are

modified at the N terminus with a fatty acid. The lipid side chains

of lipopeptide antibiotics are believed to play an important role in

their interactions with their cellular target, i.e., cell membranes.

The predicted gene products of six ORFs (fusB, fusC, fusD,

fusE, fusF, and fusG) upstream of fusA show homology to en-

zymes involved in fatty acid or amino acid synthesis (Table 1)

and, accordingly, are likely involved in the synthesis and/or mod-

ification and activation of a fatty acid precursor for attachment to

the amino group of the N-terminal L-Thr residue of fusaricidin.

The acyl-CoA ligase encoded by fusF may begin the process

of lipid side chain synthesis by coupling coenzyme A (CoA) to

an acyl group, perhaps arising from primary metabolism or gen-

erated by the action of the FusD gene product. The resulting CoA

derivative would then be transferred to an acyl carrier protein

(ACP) for elongation by the fusB, fusC, and fusG gene products,

although no gene encoding an ACP-like protein was found in the

fus cluster. Possibly, an ACP from fatty acid biosynthesis or from

some other NRP or polyketide gene cluster fills this need in fusar-

icidin biosynthesis. Similarly, there is no obvious candidate gene

in the fus cluster to provide a ketoreductase function during fatty

acid biosynthesis, unless the aldehyde dehydrogenase encoded

by fusE fulfills this role. Rather than starting the process of side

chain synthesis, it is also possible that FusF ends the process

by activating the fully formed lipid side chain to a CoA derivative

before transfer to the initial C domain of FusA.

During lipid side chain synthesis, a b-OH group must be pre-

served or introduced into the growing fatty acid chain, and, ulti-

mately, the activated fatty acid must be further modified by

addition of a guanidino group. Alternatively, perhaps an arginine

residue is deaminated to 5-guanidino pentanoic acid, then acti-

vated and transferred to ACP for elongation by a process anal-

ogous to fatty acid biosynthesis. Acylation of the N-terminal
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Boundaries of the fus Cluster
Downstream of fusA and oriented in the opposite orientation,

a 624 bp ORF encoding a putative protein of 207 amino acids

was detected (Figure 2A). This gene product shows the greatest

similarity to proteins of the a/b hydrolase fold family (�45% iden-

tity) and has one conserved GxSxG motif typical of thioes-

terases. Therefore, we designated this ORF fusTE, although it

shows no similarity to genes encoding type II thioesterases

from other NRPS gene clusters. It also shows no significant sim-

ilarity to the C-terminal TE domain of FusA, but it may catalyze

hydrolysis of acyl or aminoacyl groups inappropriately attached

to the 40-PP cofactors of fusaricidin synthetase, as has been

demonstrated for other type II thioesterases (Schwarzer et al.,

2002). Alternatively, FusTE may function as an acyltransferase

for transfer of the fatty acid of fusaricidin onto the first condensa-

tion module of FusA, as has been demonstrated for SrfD, the type

II thioesterase of surfactin biosynthesis (Steller et al., 2004). DNA

sequence further upstream of fusTE showed 99% identity to a

P. polymyxa 16S rRNA gene, and beyond that a 23S rRNA

gene is apparent (Table 1). Therefore, fusTE was assigned as

the 30 boundary of the fusA gene cluster even though no gene-

disruption studies were conducted to confirm its involvement.

About 10 kb of DNA sequence upstream of fusG was also ex-

amined in order to identify additional genes involved in fusarici-

din production (Figure 2A). The next ORF (ymcC) upstream of

fusG encodes a protein product of 177 aa with similarity to

YmcC (a protein with unassigned function) from various species.

The counterpart of ymcC in the B. subtilis 168 genome precedes

a cluster of putative polyketide synthase genes. In order to deter-

mine whether ymcC plays a role in fusaricidin biosynthesis,

a ymcC mutant was created by using a previously described

PCR-targeting mutagenesis method (Li et al., 2007). The result-

ing ymcC mutant was assessed for fusaricidin production by bio-

assay of culture extracts against the indicator fungus L. macu-

lans, but fusaricidin production was unchanged compared to

the wild-type (data not shown). Another ORF oriented in the
r Ltd All rights reserved
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same transcriptional direction, as ymcC is located further up-

stream. The predicted gene product of 445 aa shares sequence

similarity with potassium-uptake transporter proteins and so was

designated ktp. However, the PKB1 mutant in which ktp was re-

placed by an antibiotic-resistance cassette also produced wild-

type levels of fusaricidins, thus indicating that the gene product

of ktp is not required for export of, or resistance to, fusaricidins.

In the sequenced region further upstream from ktp, a variety of

ORFs was encountered, but none encoded functions obviously

related to fusaricidin biosynthesis (Table 1). Therefore, the 50

boundary of the fus cluster is likely defined by fusG.

SIGNIFICANCE

The gene cluster for production of fusaricidin-type antifungal

antibiotics has been cloned and characterized from Paeniba-

cillus polymyxa PKB1, a potential biocontrol agent for black-

leg disease of canola. Other than fusA, encoding the peptide

synthetase, and genes associated with the synthesis and at-

tachment of the N-terminal guanidino-lipid, no genes for reg-

ulation, resistance, or transport were found in the cluster.

Genes encoding regulators and ABC-type transporters are

frequently found in gene clusters for lipopeptides, although

their involvement in peptide production has not always

been established (Roongsawang et al., 2003; Miao et al.,

2005; Mootz and Marahiel, 1997). In fusaricidin production,

these functions must be provided by genes from elsewhere

on the chromosome. D-amino acid residues are important el-

ements of nonribosomally produced peptides. Examination

of the fusaricidin gene cluster revealed that two strategies

for D-amino acid incorporation are employed by fusaricidin

synthetase. Incorporation of D-amino acids in the second,

fourth, and fifth positions of fusaricidins is mediated by E do-

mains in the corresponding modules, whereas no E domain

is found in the sixth module corresponding to D-Ala. The

sixth A domain of FusA exhibits stereospecificity for D-Ala,

a characteristic only reported previously in two eukaryotic

NRPSs and one prokaryotic hybrid peptide/polyketide syn-

thetase. Cloning of the fusaricidin NRPS gene makes it pos-

sible to consider genetic manipulation to increase the anti-

fungal activity of the PKB1 strain. Fusaricidin is a mixture

of at least 12 depsipeptides, resulting from the relaxed sub-

strate specificity of fusaricidin synthetase. Alterations of A

domain selectivity by mutation of specificity-conferring res-

idues (Eppelmann et al., 2002; Uguru et al., 2004) may make it

possible to narrow the substrate specificities of the relevant

FusA modules, thereby increasing yields of fusaricidin A and

B, variants associated with the greatest antifungal activity

(Beatty and Jensen, 2002).

EXPERIMENTAL PROCEDURES

Strains and Growth Conditions

Media for growth of P. polymyxa PKB1 and Escherichia coli have been previ-

ously described (Li et al., 2007). E. coli DH5a and XL1-Blue were used for prep-

aration of recombinant plasmids. E. coli strain E. cloni Replicator (Lucigen,

Middleton, WI) was used as the host for the fosmid genomic library and prep-

aration of fosmid DNA. High-level production of recombinant proteins was per-

formed in E. coli BL21(DE3).
Chemistry & Biology 15,
DNA Manipulations

Chromosomal DNA from P. polymyxa was isolated as previously described (Li

et al., 2007). The P. polymyxa ymcC and ktp mutants were constructed by us-

ing the previously described PCR-targeted mutagenesis technique (Li et al.,

2007). The PCR primers used to amplify the Aprar Cmr oriT disruption cassette

are as follows: ymcC mutant, JRL42-RD (50-AAATACCAATTTCTAATTTGA

AAGGAATCATCTATTATGATTCCGGGGATCCGTCGACC-30) and JRL43-RD

(50-ACCAGCCAGATATCATCTAAGTGTAAGTCTTAACCTTTATGTAGGCTGGA

GCTGCTTC-30); ktp mutant, JRL31-RD (50-CTCTTTTTCATAAGAACGGATGGA

GAGAATACTCTAATGATTCCGGGGATCCGTCGACC-30) and JRL32-RD (50-G

CTAATCAGCACGGGTACATCCTTTTTATAGATACATTATGTAGGCTGGAGCTG

CTTC-30). The l Red recombination plasmid pKD46 and fosmid 4G9 were used

to prepare the disruption constructs. All other DNA manipulations were carried

out according to standard techniques (Sambrook et al., 1989).

Cloning and Sequencing of the fus Gene Cluster

A genomic library of P. polymyxa PKB1 was constructed with the fosmid vector

pSMART-FOS (Lucigen, Middleton, WI), by following the manufacturer’s

instruction. Chromosomal DNA from the PKB1 strain was partially digested

with Sau3AI and was size fractioned on a 0.8% low-melting-point agarose

gel. The region containing DNA fragments of 35–45 kb was excised and recov-

ered from the gel by agarase digestion. After precipitation with isopropanol,

the purified genomic DNA fragments were ligated with BamHI-digested, de-

phosphorylated pSMART-FOS vector at 16�C for 16 hr. The resulting ligation

mixture was packaged in vitro with Gigapack III XL (Stratagene) and then intro-

duced into the E. cloni Replicator cells by transfection. A total of 550 clones

were transferred onto a Hybond-N nylon membrane (Amersham Pharmacia

Biotech, Buckinghamshire, UK) and screened according to the manufacturer’s

protocols. The nucleotide sequences of positive fosmid inserts were deter-

mined in part by SeqWright DNA Technology Services (Houston, TX). Gaps

were closed by direct sequencing of fosmid DNA, carried out by the Molecular

Biology Facility at University of Alberta. GeneTools 2.0 and PepTool 1.0 (Bio-

Tools, Inc., Edmonton, Canada) were used for analysis of the DNA sequence

and the amino acid sequence, respectively. Nucleotide and amino acid se-

quence similarity searches were performed by using the online program

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/).

Overproduction and Purification of the His-Tagged Adenylation

Domain Corresponding to D-Ala

A DNA fragment encoding the sixth A domain (FusA-A6) was amplified from

fosmid 6D11 by using the Expand High-Fidelity PCR system (Roche, Man-

nheim, Germany) with primers JRL37 (50-TAAGGATCCCCAAATCTGCGCTAG

TTCTAC-30) and JRL38 (50-CTGCATATGCGTATTGATGAGCTGGAGTTGA-30)

(restriction sites are underlined). PCR products were first cloned into pCR2.1-

TOPO (Invitrogen, Carlsbad, CA), and then excised as NdeI-BamHI fragments

and ligated into a similarly digested pET-19b (Novagen, Darmstadt, Germany).

E. coli BL21(DE3) cells were then transformed with the recombinant expres-

sion plasmid, and cultures yielded an N-terminally His-tagged protein when

grown in Luria-Bertani medium to an OD600 of 0.6, followed by induction

with 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG) and then 4 hr of growth

at 22�C. Purification of soluble His-tagged FusA-A6 protein was performed by

Ni2+-affinity chromatography (QIAGEN) according to the manufacture’s proto-

col. Purified protein was then desalted into assay buffer (50 mM sodium phos-

phate [pH 8.0], 10 mM MgCl2, 2 mM dithiothreitol, 1 mM EDTA) by using

a NAP�-5 column (Amersham Pharmacia Biotech, Uppsala, Sweden). The

purity of the recombinant protein was checked by sodium dodecyl sulfate

(SDS)-polyacrylamide gel electrophoresis with Coomassie Brilliant blue stain-

ing. Protein concentration was determined by using a calculated 3280 for

purified FusA-A6 of 65,375 M�1cm�1.

ATP-PPi Exchange Assay

The amino acid specificity of purified recombinant FusA-A6 protein was deter-

mined by using an ATP-PPi exchange assay, performed as previously de-

scribed (Mootz and Marahiel, 1997), with minor modifications. Reaction mix-

tures contained 50 mM sodium phosphate (pH 8.0), 2 mM MgCl2, 2 mM

dithiothreitol, 2 mM ATP, 1 mM amino acid substrate, 0.2 mCi tetrasodium

[32P]-pyrophosphate (Perkin Elmer, Boston, MA) and 0.1 mM tetrasodium py-

rophosphate. Reactions were initiated by the addition of recombinant FusA-A6
118–127, February 2008 ª2008 Elsevier Ltd All rights reserved 125
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protein to a final concentration of 250 nM in a total volume of 100 ml. After in-

cubation at 37�C for 15 min, reactions were stopped by adding 0.5 ml termina-

tion mixture (1.2% [w/v] activated charcoal, 0.1 M tetrasodium pyrophosphate,

and 0.5 M HClO4). The charcoal was sedimented by centrifugation and

washed once with 1 ml H2O. The radioactivity bound to the charcoal was de-

termined by liquid scintillation counting.

ACCESSION NUMBERS

The nucleotide sequence of the fusaricidin biosynthetic gene cluster and flank-

ing regions from P. polymyxa PKB1 has been deposited in GenBank by

appending it to accession number EF451155.
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Note Added in Proof

An article has appeared recently describing the sequence of a similar fusarici-

din synthetase-encoding gene from another strain of Paenibacillus polymyxa.

See: Choi, S.K., Park, S.Y., Kim, R., Lee, C.H., Kim, J.F. and Park, S.H. (2008).

Identification and functional analysis of the fusaricidin biosynthetic gene of

Paenibacillus polymyxa E681. Biochem. Biophys. Res. Commun. 365, 89–95.
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